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Abstract: This paper provides a systematic overview of digital planning technology, in particular, 
its scope, types, frontier trends, and main obstacles viewed through a data and knowledge-driven 
technological paradigm. Firstly, it distinguishes between the two concepts of digital technology 
and digital planning technology. Secondly, it summarizes two technological paradigms, driven by 
knowledge and data respectively, based on an overview of the evolutionary paths of three types 
of digital planning technologies: urban modeling technology, spatial-temporal big data planning 
technology, and artificial intelligence planning technology. Lastly, the paper discusses frontier 
trends in digital planning technologies from the perspectives of data and knowledge. It is 
concluded that digital planning technologies can be understood as digital applications in planning 
analysis, simulation, and decision-making throughout the planning processes. The specific 
application is determined by either the data- or knowledge-driven paradigms. While the former 
better supports planning analysis and simulation, deficiencies in the latter hinder decision-
making. Future digital planning technologies are expected to be driven by both data and 
knowledge. The challenge lies in the transition from data to knowledge through data-based 
learning, extracting the "white-box knowledge" in planning, and allowing knowledge to drive 
analysis, simulation, and decision-making in planning. 
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In the current digital era, digital technologies are profoundly changing people's lives and work. 
The development of cloud computing, big data, artificial intelligence, and other digital 
technologies has accelerated the digital transformation of society, including daily life, the 
economy, and governance. The field of urban and rural planning has also felt the strong impact of 
digitization and digital technologies. The past decade has been a period of tremendous influence 
from digital technologies on urban and rural planning. For example, digital twin technology and 
virtual reality technology have changed the way we perceive and explore urban spaces [1-2], 
while spatiotemporal big data, artificial intelligence, and other technologies have rapidly 
integrated into urban and rural planning research and practices [3-5]. The rapid rise of Artificial 
Intelligence Content Generation (AIGC) technology is changing the way planning drawings and 
reports are generated. From the supporting technologies of planning research to the generation 
of outcomes in planning practices, digital technologies have had a comprehensive and significant 
impact on urban and rural planning. 
 
The past decade has also been a period when the urban and rural planning discipline focused 
heavily on digital planning technologies. Spatiotemporal big data and artificial intelligence 
technologies have become hot topics in the field, sparking two waves of interest. Since the early 
2010s, spatiotemporal big data technology has attracted widespread attention and had a 
profound impact on urban spatial research. Spatiotemporal big data technology has been rapidly 
applied in various research fields, including urban spatial structure, regional spatial structure, 



behavior and the built environment, and urban governance, ushering in the "big data era" of 
planning research [6]. From the late 2010s to the present, artificial intelligence technology has 
also attracted significant attention in the planning discipline [7]. In particular, machine learning 
has gained attention from both domestic and international planning researchers, with related 
academic papers rapidly increasing after 2018 [8]. The wave of artificial intelligence in urban and 
rural planning is still gaining momentum [9]. Digital planning technologies have become widely 
used in planning research, with research topics spanning various directions. 
 
In the current digital era, digital planning technologies have become mainstream in the planning 
field. Although there is a wide variety of digital planning technologies currently used in planning 
research and practice, there remain many unresolved questions regarding how to understand 
digital planning technologies themselves and the effects and changes brought about by their 
rapid development. This paper aims to address these issues by first defining the concept of digital 
planning technologies. It will then review the evolution of digital planning technologies from the 
perspectives of data and knowledge, systematically organizing their technological paradigms. 
Finally, it will discuss the research frontiers and challenges of digital planning technologies and 
look ahead to the future trends in digital planning technologies within urban and rural planning. 
 
1. Scope and Uses of Digital Planning Technologies 
1.1 Distinction Between Digital Technologies and Digital Planning Technologies 
To accurately define the concept of digital planning technologies, it is necessary to begin by 
understanding the meaning of the word "technology." The definitions of "technology" in different 
dictionaries are generally consistent and are explained in terms of the relationship between 
science and technology, stating that "technology is the application of specific methods derived 
from science in practice" [1]. From the relationship between technology and science, it becomes 
clear that the technologies used in current urban and rural planning research and practice can be 
classified into two categories. 
 
The first category can be directly referred to as "digital technologies." Although technologies such 
as virtual reality, cloud computing, and the Internet of Things (IoT) have been applied in the 
planning industry, the science driving these technologies is computer science. The specific 
application of these technologies in planning relies on scientific methods and is not significantly 
different from their application in other fields or disciplines. A typical example is the use of virtual 
reality technology in planning outcomes presentations and database technology in planning 
information management. 
 
The second category can be referred to as "digital planning technologies." Digital planning 
technologies are methods that use digital technologies in various stages of urban and rural 
planning research and practice. These technologies are used to analyze the current state of 
planning, model predictions, formulate proposals, select plans, implement planning, and monitor 
and evaluate planning outcomes. Although these technologies are based on digital technologies, 
they are driven by knowledge from the planning discipline, rather than computer science. In 
specific terms, the application of these technologies in the stages of current situation analysis, 
modeling, proposal formulation, plan selection, implementation, and evaluation of planning 



outcomes relies on scientific methods that differ significantly from applications in other fields. 
 
Before the advent of digital technologies, various planning technologies already existed. One 
example can help illustrate the relationship and differences between "digital technologies" and 
"digital planning technologies." In the early 1960s, McHarg proposed the use of overlay 
techniques for land suitability analysis. He used hand-rendered transparent films and manually 
overlapped light sheets to implement the "layered" method. The "layered" method created by 
McHarg is a planning technique driven by the "design with nature" planning philosophy proposed 
by McHarg, which is a knowledge of the planning discipline [10]. McHarg's planning technology 
inspired early GIS researchers in the 1960s and led to the development of GIS spatial overlay 
functions, which later became one of the core spatial analysis functions of GIS. GIS spatial overlay 
is a "digital technology," driven by the science of geographic information science. After the 1980s, 
land suitability analysis based entirely on GIS overlays was developed [11-12], becoming a "digital 
planning technology." The knowledge driving the GIS-based land suitability analysis technique is 
still rooted in the planning philosophy that McHarg proposed. This example clearly shows the 
need to distinguish between "digital technologies" and "digital planning technologies." 
 
1.2 Types of Uses of Digital Planning Technologies 
After distinguishing digital technologies and digital planning technologies, we can discuss the 
different uses of digital planning technologies. Digital planning technologies can be categorized 
into three types based on their uses: analysis of planning effects, simulation of planning 
phenomena, and decision-making for planning objects. Analytical uses refer to the analysis of 
effects, factors, and mechanisms. The term "diagnosis" commonly used in recent years is a typical 
analytical use. For example, analyzing public perceptions of communities through spatiotemporal 
big data can effectively diagnose the effectiveness of community governance [13]. Simulation 
uses include modeling and simulation, with the term "scenario simulation" being a typical 
example. For instance, simulating the impacts of implementing compact city policies on public 
services and urban finances [14]. Decision-making uses refer to the formulation and selection of 
planning proposals, which are core to planning. For example, using deep neural networks to 
generate the optimal street network plan [15]. All three uses of digital planning technologies rely 
on various digital technologies as basic tools, but they are driven by the knowledge from the 
planning discipline in the stages of current situation analysis, modeling, proposal formulation, 
plan selection, implementation, and evaluation. 
 
2. Urban Modeling Technology: Knowledge-Driven and Data-Driven 
2.1 Urban Modeling Technology Since the 21st Century 
Urban modeling technology is a historically significant planning technology. Emerging in the 
1950s, urban modeling was initially not a digital planning technology, as models required manual 
calculations. During the 1960s, urban modeling technology became widely accepted, driven by 
the rational planning ideology, which promoted the development of urban models, particularly 
large-scale urban models. Decision-making was the primary use of urban modeling technology, 
which is referred to in planning history as the era of rational planning. The rational planning 
movement ended in the 1970s, leading to widespread questioning and criticism of large-scale 
urban models [16]; however, urban modeling technology did not disappear and has continued to 



exist in academia [17]. Since the 1990s, urban modeling has integrated with digital technologies 
like GIS [18], making it a typical form of digital planning technology. 
 
Since the 21st century, three types of urban modeling technologies have developed in parallel. 
The first type is the traditional large-scale urban models, which continue to evolve in the 21st 
century. The second type is the rule-based models that emerged in the mid-1990s, primarily 
fostered by GIS technology. The third type consists of micro-simulation models such as cellular 
automata (CA). These three types of urban models have continuously evolved in their technical 
paradigms and uses. 
 
2.2 Knowledge-Driven and Data-Driven Urban Modeling Technologies 
The first type of large-scale urban models is still used in land and transportation planning in 
metropolitan areas, with Urbanism being a typical example [19-20]. After the 1990s, large-scale 
urban models shifted from traditional decision-making uses to simulation uses, aimed at 
modeling the various impacts of future planning policies. In terms of technical paradigms, large-
scale urban models are knowledge-driven planning technologies, where the principles of the 
models are built on planning knowledge, considering the interactions between space and 
transportation, as well as the decision-making principles of households, businesses, and 
governments. Large-scale urban models are often referred to as "black box knowledge" or "gray 
box knowledge" driven. This is because expressing the interactions of land, transportation, and 
environment requires complex mathematical formulas that encompass numerous parameters 
and are difficult to understand, making it hard to clearly and directly correspond to spatial 
planning goals and strategies. 
 
The second type, rule-based models, is typified by CUF [21] and "what if" [22-23]. Rule-based 
models were initially developed to simulate policies, assess the potential impacts of planning 
policies, and evaluate the rationality and feasibility of planning strategies, rather than for 
decision-making. In terms of technical paradigms, rule-based models are still classified as 
knowledge-driven planning technologies, but their principles are expressed as clear and simple 
rules. For example, the CUF model first predicts total demand; then, it allocates land use based 
on land suitability [24]. These models are no longer based on mathematical formulas that involve 
spatial interactions or discrete choices. In contrast, rule-based models are known as “white box 
knowledge” driven, as they are based on explicit knowledge that formulates simple model rules. 
The emergence of such clear rule-based models is closely linked to the integration of digital 
technologies and GIS. 

Tab.1  Technological paradigm and usage of urban modeling technology 

X Large-scale 
Urban Models 

Rule-based 
Models 

Microscopic 
Simulation 

Models 

Technical 
Paradigm 

Knowledge-
driven 

Knowledge-
driven 

Data-driven 

Purpose From decision-
making to 
simulation 

Simulation Simulation 

 
The third type of micro-simulation models includes the CA (Cellular Automaton) model [25] and 



the ABM (Agent-Based Model) [26]. These micro-simulation models were originally developed to 
predict and simulate future land use patterns, and they continue to serve this purpose. These 
models introduced CA and ABM from computer science, leading to the emergence of a new data-
driven technological paradigm. Micro-simulation models rely on long time-series historical data 
to calibrate model transformation rules, requiring the use of long-term historical data to train the 
model in order to predict future land use changes. For example, using 200 years of historical data 
to calibrate the model and simulate land use evolution over the next 50 years [27]. CA, 
originating from computer science, introduced data-driven modeling methods. The core of the 
cellular automaton model is its transformation rules, which do not incorporate planning theories 
or principles. The rules are "trained" from data. This "trained" knowledge, even if it exists, is 
considered "black-box knowledge." 
 
From the perspective of data-driven and knowledge-driven technological paradigms, knowledge 
has always been a key term in urban modeling technologies. Traditional large-scale urban models 
are based on "gray-box knowledge"②, rule-based model foundations are based on "white-box 
knowledge," and micro-simulation models introduced a "data-driven" modeling paradigm, 
bringing about "black-box knowledge" (Table 1). Currently, urban modeling technology is more 
commonly used as a laboratory for simulating urban spatial evolution, with simulation being the 
mainstream application, rather than the decision-making tool of the rational planning era. 
Whether knowledge-driven or data-driven, urban modeling technologies today are primarily used 
for simulation and cannot effectively meet the needs of decision-making. 
 
3. Data-driven Spatio-temporal Big Data Planning Technology 
3.1 Evolution of Spatio-temporal Big Data Technology 
Spatio-temporal big data has been part of planning disciplines for more than 10 years. Spatio-
temporal big data itself can serve as a digital technology in planning. The earliest Mobile 
Landscapes project, which sensed urban activity intensity and spatio-temporal changes through 
mobile phone call volumes, utilized spatio-temporal big data, which was still considered within 
the realm of digital technology [28]. Over the past decade, spatio-temporal big data in urban and 
rural planning has gradually evolved from a digital technology into a digital planning technology 
for studying the relationship between urban space and urban activities. It has become an 
effective supporting planning technology in research on urban spatial structure, regional spatial 
structure, behavior and the built environment, urban governance, and other planning topics. 
Spatio-temporal big data planning technology supports the research of "urban activities" and 
"urban space" from four aspects: "perceiving spatio-temporal phenomena of activities in space, 
recognizing spatio-temporal patterns of activities in space, discovering spatial factors affecting 
activities, and exploring the mechanism of interaction between space and activities" [6]. These 
four aspects of spatio-temporal big data planning technology should be understood within the 
data-driven and knowledge-driven technological paradigms. 
 
3.2 Data-driven Research on Activities and Space 
"Perceiving spatio-temporal phenomena of activities in space" refers to the use of spatio-
temporal big data to quantify and describe the spatio-temporal phenomena of activities in urban 
spaces, without involving the underlying influencing factors or mechanisms. In this technical type, 



spatio-temporal big data serves as a technology for perceiving the spatio-temporal characteristics 
of urban activities. For example, the Mobile Landscapes project used mobile phone call data to 
measure the spatio-temporal variation of urban activity intensity [28]. "Recognizing spatio-
temporal patterns of activities in space" refers to using spatio-temporal big data to summarize 
spatio-temporal patterns and regularities of urban activities. For instance, using spatio-temporal 
big data to derive the travel patterns of differentiated populations [29]. This type of research 
either starts from time or space to explore activity patterns and regularities but does not 
consider the interaction mechanisms between space and activities. Both of these types of spatio-
temporal big data research are data-driven. 
 
"Discovering spatial factors affecting activities" refers to using spatio-temporal big data to identify 
the spatial factors behind urban activities. For example, using multi-source spatio-temporal big 
data to infer urban functions from the spatio-temporal characteristics of urban activities [30]. 
This is a technique for interpreting urban function information from the data. "Exploring the 
mechanism of interaction between space and activities" refers to using spatio-temporal big data 
to explore the characteristics of the interaction between urban space and urban activities and to 
understand their mechanisms. For example, using spatio-temporal big data to measure the 
spatial service range of different functional urban commercial centers and verify the central place 
theory in commercial center system planning [31]. This is a technique for interpreting information 
from the data on urban activities and urban space to verify existing disciplinary knowledge. These 
two types of spatio-temporal big data technologies are also data-driven. 
 
Thus, spatio-temporal big data planning technology is always a data-driven paradigm, extracting 
information from data and discovering new phenomena or verifying existing knowledge. From its 
inception, spatio-temporal big data planning technology has always been used for analysis, 
effectively solving spatial and activity analysis, but it is still not capable of simulating or 
supporting decision-making (Table 2). Spatio-temporal big data is transitioning from "diagnosing" 
urban space to "predicting" urban space, and thus supporting planning decisions, which is one of 
the frontiers of spatio-temporal big data planning technology. 

Tab.2  Technological paradigm and usage of spatial-temporal big data planning technology 
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4. Artificial Intelligence Planning Technology: Knowledge-driven and Data-driven 



4.1 Knowledge-driven Expert System Technology 
Artificial intelligence is a long-established digital technology. The first wave of artificial 
intelligence was expert systems (ES), also known as knowledge-based systems (KBS). Around 
1980, various fields explored the application of expert systems, including urban planning. The 
earliest artificial intelligence planning technologies emerged in the 1980s, with publications [32], 
monographs [33], and several systems appearing, such as expert systems for zoning [34] and site 
selection [35]. As early as the late 1980s, Chinese planning scholars began exploring urban 
planning expert systems. Chen Bingzhao et al.'s paper on the expert system for planning and 
construction management, published in 1989, is considered the first AI paper in the field of urban 
planning in China, almost synchronous with international exploration. 
 
An expert system is a technology for assisting decision-making in planning objectives. Its 
characteristic is that it extracts expert knowledge, builds a knowledge base, and expresses 
knowledge in clear, rule-based formats, which the machine uses for decision-making. Expert 
systems belong to the typical knowledge-driven technological paradigm, where the key is to 
express planning knowledge as clear "if-then" rules, forming "white-box knowledge" in the 
knowledge base. The system makes decisions based on these "if-then" rules. 
 
However, expert system planning technology encountered many difficulties [37]. By the 1990s, 
the academic community agreed that two difficulties were hard to overcome [33,38]. The first 
difficulty was knowledge extraction—how to summarize planning knowledge in plain language. 
The difficulty of expressing and extracting planning knowledge is the biggest obstacle to 
developing urban planning expert systems, a challenge determined by the nature of planning 
knowledge itself. The second difficulty was knowledge representation—how to express planning 
knowledge in standardized "rules." In fact, much of urban planning knowledge cannot be 
expressed as "if-then" rules, and many judgments are vague and unclear. The difficulty of 
extracting and expressing planning knowledge in clear rules is the reason why AI exploration in 
urban planning slowed or stagnated after the 1990s. 
 
4.2 Data-driven Machine Learning Technology 
Since the 2010s, machine learning has developed, sparking another wave of artificial intelligence. 
By the late 2010s, machine learning entered urban planning and has become the mainstream 
artificial intelligence planning technology today [8]. Unlike expert systems, machine learning no 
longer requires knowledge extraction but learns from large amounts of experiential "data," 
allowing the machine to accumulate knowledge and use the learned knowledge to make 
judgments and solve problems. Machine learning avoids the issue of planning knowledge being 
vague and difficult to express. On the other hand, machine learning's key element is data—it is 
"trained" through data. Big data has solved the problem of data sources for machine learning, 
which explains why machine learning became prominent in the big data era. Machine learning 
planning technology belongs to the data-driven technological paradigm. 
 
Using machine learning to evaluate street built environment quality from street view images is 
now a common application [39]. Built environment quality evaluation is a completely data-driven 
planning technology that enables intelligent judgment through training with image big data. 



Machine learning methods are also being explored for planning proposal generation [40-41]. For 
example, by learning the texture of urban road networks, it has become possible to automatically 
generate planning road networks that integrate with historical street patterns, a decision-making 
application in design [15]. It is worth noting that the former is used for analysis, while the latter is 
used for decision-making. 
 
In 2023, Artificial Intelligence Content Generation (AIGC) emerged. AIGC involves deep learning, 
natural language processing, and other machine learning techniques and can be seen as a form 
of practical machine learning application. Based on general large models, specialized planning 
models are trained and used for generating planning reports, drawings, and other outputs. These 
models, once trained to understand specific planning task requirements, can generate diverse 
content like planning texts and images. This is an exciting development in artificial intelligence 
planning technology. 
 
4.3 Understanding Artificial Intelligence Planning Technology through the "Data and 
Knowledge" Dimension 
From the perspective of "data and knowledge," artificial intelligence planning technology has 
always been focused on knowledge. Early expert systems were "knowledge-driven" and based on 
"white-box knowledge," but acquiring planning knowledge was its biggest challenge. Today, 
machine learning planning technology allows machines to train knowledge models from data, 
resulting in "black-box knowledge." Even those who write algorithms cannot explain why the 
machine made a certain decision, as it is "trained" from data. Thus, even data-driven AI planning 
technology operates around knowledge, albeit in the form of "black-box knowledge." 
 
In summary, artificial intelligence planning technology began with the knowledge-driven 
paradigm, while the development of machine learning brought about the data-driven paradigm. 
Whether knowledge-driven or data-driven, current AI planning technologies are mainly used for 
analysis and still struggle to meet decision-making needs (Table 3). The characteristics of the 
planning discipline itself determine that AI planning technology cannot rely solely on knowledge-
driven approaches or data-driven ones, as machine learning leads to "black-box knowledge," and 
planning decisions cannot be based on "black-box knowledge." 

Tab.3  Technological paradigm and usage of artificial intelligence planning technology 
 Expert Systems 

(ES/KBS) 

Machine Learning 
(ML) 

Technical Paradigm Knowledge-driven Data-driven 

Usage Decision-making Analysis, decision-
making 

 
Peng et al. [42] proposed a four-stage view from the perspective of the relationship between 
planners and AI, including Stage 1 AI-assisted, Stage 2 AI-augmented, Stage 3 AI-automated, and 
Stage 4 AI-automatized. The case mentioned earlier about automatically generating urban road 
networks belongs to Stage 3, where human planners set goals and AI provides solutions. The core 
idea of AI in urban planning in all four stages is that humans should not be excluded from the 
planning process, as planning always involves human-centered decision-making activities. 
Understanding artificial intelligence planning technology through the "data and knowledge" 



dimension helps better comprehend this core idea because human-centered decision-making 
activities require the support of "white-box knowledge" rather than "black-box knowledge" 
derived from machine learning. 
 
5. "From Data to Knowledge": Prospects and Challenges of Digital Planning Technology 
5.1 Knowledge-driven and Data-driven 
The knowledge-driven technological paradigm relies on the knowledge of planning disciplines for 
analysis, simulation, and decision-making, and requires known planning knowledge as a 
foundation. For example, in large-scale urban models, planning knowledge is presented through 
mathematical formulas, and in expert systems, planning knowledge is presented in the form of 
rules. In the knowledge-driven technological paradigm, data is still essential, and it is applied 
based on disciplinary knowledge to fulfill analysis, simulation, and decision-making purposes. 
 
The data-driven technological paradigm relies on data for analysis, simulation, and decision-
making, and does not necessarily require pre-existing planning knowledge as a foundation. The 
data-driven technological paradigm either directly extracts the characteristics, influencing factors, 
and mechanisms of planning effects from the data, such as spatio-temporal big data planning 
technology, or trains models with data and uses them for planning analysis, simulation, and 
decision-making, such as machine learning planning technology. 
 
Knowledge-driven originates from the knowledge system of planning disciplines and is an 
inherent technological paradigm of planning. Data-driven is an outcome of the integration of 
digital technology and planning technology. The integration of digital technology has greatly 
propelled the development of data-driven planning technology, solving many long-standing 
challenges in planning technology. Reviewing the evolution of three typical planning technologies 
since the 1990s, the data-driven technological paradigm has become the mainstream in 
contemporary digital planning technology. 
 
5.2 Knowledge: White-box, Gray-box, Black-box 
"Technology is the application of scientific methods in practice," which defines the relationship 
between knowledge and technology. Reviewing the evolution of the three typical digital planning 
technologies, they can be classified into "white-box knowledge," "gray-box knowledge," and 
"black-box knowledge." In rule-based models and expert systems, knowledge is white-box. In 
large-scale urban models, knowledge is gray-box. In cellular automaton planning technology and 
machine learning planning technology, knowledge is black-box (see Figure 1). 



 
Figure 1: White-box knowledge, gray-box knowledge, and black-box knowledge of digital 

planning technology 
 
"White-box knowledge" is reliable, and ideally, planning technology should be driven by "white-
box knowledge." The biggest challenge faced by "white-box knowledge" in planning is knowledge 
extraction and knowledge representation—how to transform vague, implicit, and uncertain 
planning knowledge into rule-based "white-box knowledge." The journey of expert systems has 
shown that this difficulty is determined by the characteristics of planning knowledge itself, 
resulting in bottlenecks for knowledge-driven technological paradigms. 
 
Data-driven planning technology bypasses the challenges of knowledge extraction and 
knowledge representation but brings about "black-box knowledge." Machine learning-based 
artificial intelligence planning technology is a typical example. While machine learning-based 
artificial intelligence planning technology produces impressive results, it has also been criticized 
for its "black-box knowledge" compared to the "gray-box knowledge" of large-scale urban models. 
Planning decisions cannot be simply based on "black-box knowledge," especially for significant 
planning decisions. This is why data-driven technological paradigms can support analysis and 
simulation purposes but struggle to support decision-making purposes. 
 
5.3 Key Challenges in "From Data to Knowledge" for Digital Planning Technology 
Planning itself is a human-centered decision-making activity, which determines the changes in 
the analysis, simulation, and decision-making purposes that digital planning technology assumes, 
as well as the evolution of data-driven and knowledge-driven technological paradigms. Critiques 
of rational planning have already shown that knowledge-driven decision-making in traditional 
planning technology has significant limitations. The data-driven paradigm has enriched and 
enhanced planning technology but has also brought about the issue of "black-box knowledge." 
This makes data-driven planning technology more suitable for analysis and simulation purposes 
and challenging to meet decision-making purposes because planning decisions should not be 
simply based on "black-box knowledge." 
 
Supporting decision-making in planning has always been the pursuit of planning technology. To 
effectively support decision-making purposes, the future of digital planning technology lies in the 
"data and knowledge-driven" technological paradigm. Existing technologies are already capable 



of producing "black-box knowledge." If we can solve the challenge of learning "white-box 
knowledge" from data or discover and understand "white-box knowledge" from the results of 
machine learning, then using "white-box knowledge" for planning analysis, simulation, and 
decision-making purposes should be a reliable and trustworthy approach. Based on the "data and 
knowledge-driven" paradigm, the key is to address the transition "from data to knowledge," or 
more precisely, "from data to 'white-box knowledge'." Learning "white-box knowledge" from 
data and using it to drive planning analysis, simulation, and decision-making is essential. 
 
The trend of digital planning technology is moving towards the "data and knowledge-driven" 
technological paradigm. To address the transition "from data to knowledge," which means 
learning patterns from data and using those patterns to support analysis, simulation, and 
decision-making purposes. Currently, AIGC (Artificial Intelligence Content Generation) and large 
models have demonstrated their value and prospects. Overcoming the challenges of expressing 
fuzzy and uncertain planning knowledge by using general large models and incorporating explicit 
knowledge from planning disciplines into specialized planning models can further support 
decision-making. This approach may be a feasible path to solving the transition "from data to 
knowledge" and is worth exploring. 
 
6. Conclusion and Outlook 
This paper defines the concepts and purposes of digital planning technology and, starting from 
the perspective of data and knowledge, delineates the two technological paradigms of digital 
planning technology. It elaborates on the research frontier and challenges of digital planning 
technology, leading to the following four conclusions. 
 
First, the concept of digital planning technology is defined, distinguishing it from digital 
technology. Digital planning technology is the application of digital technology in various stages 
of planning, including current state analysis, modeling and prediction, plan formulation, plan 
selection, plan implementation, and monitoring and evaluation. It serves three purposes: analysis, 
simulation, and decision-making. 
 
Second, digital planning technology can be categorized into two technological paradigms: data-
driven and knowledge-driven. Knowledge-driven is inherent in planning technology, while data-
driven is an outcome of the integration of digital technology. The data-driven and knowledge-
driven technological paradigms determine the types of purposes in digital planning technology. 
 
Third, current digital planning technologies used for decision-making purposes still need further 
breakthroughs. The data-driven technological paradigm can effectively support analysis and 
simulation purposes but is limited by its "black-box knowledge" when used for decision-making. 
The characteristics of planning disciplines themselves create bottlenecks for the knowledge-
driven technological paradigm, such as knowledge extraction and representation. Both paradigms 
face challenges in better meeting decision-making purposes. 
 
Fourth, the future trend of digital planning technology is to move towards the "data and 
knowledge-driven" technological paradigm. The key is to address the transition "from data to 



knowledge," which involves learning and extracting "white-box knowledge" from data, or 
discovering and understanding "white-box knowledge" from machine learning results, to drive 
planning analysis, simulation, and decision-making purposes. Digital planning technology should 
be understood as providing support for human-centered planning, as planning technology has 
always been used by humans and does not replace human decision-making—the characteristics 
of planning disciplines themselves determine this. 
 
Note: 
① This is a translation from the Cambridge Academic Content Dictionary (Cambridge University 
Press, 2017 edition) definition of technology: "Technology is a particular method by which 
science is used for practical purposes." 
② In the critique of rational planning in the 1970s, large-scale urban models were directly 
criticized as "black boxes" of knowledge. If we compare large-scale urban models with knowledge 
in later models such as cellular automata and machine learning, large-scale urban models are 
more appropriately referred to as "gray boxes" of knowledge. 
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